Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.098
Filter
1.
Methods Mol Biol ; 2788: 209-226, 2024.
Article in English | MEDLINE | ID: mdl-38656516

ABSTRACT

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Subject(s)
Agrobacterium tumefaciens , Coffea , Coffea/genetics , Agrobacterium tumefaciens/genetics , CRISPR-Cas Systems , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Gene Editing/methods , Hemolysin Proteins/genetics , Gene Expression Regulation, Plant , Transformation, Genetic , Coffee/genetics
2.
Toxins (Basel) ; 16(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668592

ABSTRACT

Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.


Subject(s)
Animal Feed , Chickens , Endotoxins , Food Contamination , Fusarium , Trichothecenes , Animals , Chickens/microbiology , Endotoxins/blood , Trichothecenes/toxicity , Fumonisins/toxicity , Male , Diet/veterinary , Heat-Shock Response/drug effects , Mycotoxins/toxicity
3.
Toxins (Basel) ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668618

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is one of the most important insect pests affecting corn crops worldwide. Although planting transgenic corn expressing Bacillus thuringiensis (Bt) toxins has been approved as being effective against FAW, its populations' resistance to Bt crops has emerged in different locations around the world. Therefore, it is important to understand the interaction between different Bt proteins, thereby delaying the development of resistance. In this study, we performed diet-overlay bioassays to evaluate the toxicity of Cry1Ab, Cry1Ac, Cry1B, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, Vip3Aa11, Vip3Aa19, and Vip3Aa20, as well as the interaction between Cry1Ab-, Cry1F-, Cry2Ab-, and Vip3Aa-class proteins against FAW. According to our results, the LC50 values of Bt proteins varied from 12.62 ng/cm2 to >9000 ng/cm2 (protein/diet), among which the Vip3Aa class had the best insecticidal effect. The combination of Cry1Ab and Vip3Aa11 exhibited additive effects at a 5:1 ratio. Cry1F and Vip3Aa11 combinations exhibited additive effects at 1:1, 1:2, and 5:1 ratios. The combination of Cry1F and Vip3Aa19 showed an antagonistic effect when the ratio was 1:1 and an additive effect when the ratio was 1:2, 2:1, 1:5, and 5:1. Additionally, the combinations of Cry1F and Vip3Aa20 showed antagonistic effects at 1:2 and 5:1 ratios and additive effects at 1:1 and 2:1 ratios. In addition to the above combinations, which had additive or antagonistic effects, other combinations exhibited synergistic effects, with variations in synergistic factors (SFs). These results can be applied to the establishment of new pyramided transgenic crops with suitable candidates, providing a basis for FAW control and resistance management strategies.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Spodoptera , Animals , Spodoptera/drug effects , Bacterial Proteins/toxicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/toxicity , Hemolysin Proteins/genetics , Bacillus thuringiensis Toxins/toxicity , Endotoxins/toxicity , Insecticides/toxicity , Larva/drug effects , Plants, Genetically Modified/genetics , Pest Control, Biological , Bacillus thuringiensis/genetics
4.
Mol Neurodegener ; 19(1): 30, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561809

ABSTRACT

Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aß expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/metabolism , Endotoxins/toxicity , Endotoxins/metabolism , Lipopolysaccharides , Microglia/metabolism , Inflammation/metabolism , Amyloid beta-Peptides/metabolism
5.
Front Cell Infect Microbiol ; 14: 1382160, 2024.
Article in English | MEDLINE | ID: mdl-38572323

ABSTRACT

Introduction: The infection with Eimeria tenella (ET) can elicit expression of various intestinal immune cells, incite inflammation, disrupt intestinal homeostasis, and facilitate co-infection with diverse bacteria. However, the reciprocal interaction between intestinal immune cells and intestinal flora in the progression of ET-infection remains unclear. Objective: The aim of this study was to investigate the correlation between cecal microbial endotoxin (CME)-related genes and intestinal immunity in ET-infection, with subsequent identification of hub potential biomarker and immunotherapy target. Methods: Differential expression genes (DEGs) within ET-infection and hub genes related to CME were identified through GSE39602 dataset based on bioinformatic methods and Protein-protein interaction (PPI) network analysis. Moreover, immune infiltration was analyzed by CIBERSORT method. Subsequently, comprehensive functional enrichment analyses employing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis along with Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed. Results: A total of 1089 DEGs and 25 hub genes were identified and CXCR4 was ultimately identified as a essential CME related potential biomarker and immunotherapy target in the ET-infection. Furthermore, activated natural killer cells, M0 macrophages, M2 macrophages, and T regulatory cells were identified as expressed intestinal immune cells. The functional enrichment analysis revealed that both DEGs and hub genes were significantly enriched in immune-related signaling pathways. Conclusion: CXCR4 was identified as a pivotal CME-related potential biomarker and immunotherapy target for expression of intestinal immune cells during ET-infection. These findings have significant implications in elucidating the intricate interplay among ET-infection, CME, and intestinal immunity.


Subject(s)
Eimeria tenella , Microbiota , Endotoxins , Eimeria tenella/genetics , Computational Biology , Biomarkers
6.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612737

ABSTRACT

Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.


Subject(s)
Benzenesulfonates , Lipid A , Lipopolysaccharides , Humans , Bacteria , Endotoxins , Glycolipids
7.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594617

ABSTRACT

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Subject(s)
Bacillus thuringiensis , Moths , Pesticides , Animals , Larva/genetics , Larva/metabolism , Soybeans/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Moths/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Chromosomes/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Insecticide Resistance/genetics
8.
Front Immunol ; 15: 1373255, 2024.
Article in English | MEDLINE | ID: mdl-38585266

ABSTRACT

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Subject(s)
Anti-Infective Agents , Heparin , Heparin/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Endotoxins/pharmacology , Klebsiella pneumoniae
9.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556749

ABSTRACT

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Female , Moths/genetics , Moths/metabolism , Larva/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Longevity , CRISPR-Cas Systems , Endotoxins/genetics , Endotoxins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics
10.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429983

ABSTRACT

The insecticidal crystal proteins produced by Bacillus thuringiensis during sporulation are active ingredients against lepidopteran, dipteran, and coleopteran insects. Several methods have been reported for their quantification, such as crystal counting, ELISA, and SDS-PAGE/densitometry. One of the major tasks in industrial processes is the analysis of raw material dependency and costs. Thus, the crystal protein quantification method is expected to be compatible with the presence of complex and inexpensive culture medium components. This work presents a revalidated elution-based method for the quantification of insecticidal crystal proteins produced by the native strain B. thuringiensis RT. To quantify proteins, a calibration curve was generated by varying the amount of BSA loaded into SDS-PAGE gels. First, SDS-PAGE was performed for quality control of the bioinsecticide. Then, the stained protein band was excised from 10% polyacrylamide gel and the protein-associated dye was eluted with an alcoholic solution of SDS (3% SDS in 50% isopropanol) during 45 min at 95°C. This protocol was a sensitive procedure to quantify proteins in the range of 2.0-10.0 µg. As proof of concept, proteins of samples obtained from a complex fermented broth were separated by SDS-PAGE. Then, Cry1 and Cry2 proteins were properly quantified.


Subject(s)
Bacillus thuringiensis , Insecticides , Insecticides/analysis , Endotoxins/analysis , Endotoxins/chemistry , Waste Products/analysis , Bacillus thuringiensis Toxins/analysis , Bacterial Proteins/chemistry , Hemolysin Proteins , Electrophoresis, Polyacrylamide Gel
11.
Mol Immunol ; 168: 64-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428216

ABSTRACT

Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.


Subject(s)
Acute Lung Injury , Endotoxins , Animals , Mice , Endotoxins/metabolism , Lipopolysaccharides/metabolism , AMP-Activated Protein Kinases/metabolism , Hydrogen/adverse effects , Hydrogen/metabolism , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473721

ABSTRACT

Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.


Subject(s)
Endotoxins , Inflammation , Child , Humans , Endotoxins/metabolism , Reactive Oxygen Species , Liver Cirrhosis , Apoptosis , Cytokines , Biomarkers
13.
Nutrients ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474770

ABSTRACT

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Subject(s)
Flavonoids , Sepsis , Shock, Septic , Mice , Animals , Sirtuin 1/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Shock, Septic/drug therapy , Endotoxins , Cytokines/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/therapeutic use
15.
Talanta ; 273: 125881, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38492283

ABSTRACT

This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection. The efficiency of the modification was confirmed by X-ray Photoelectron Spectroscopy (XPS) measurements. Additionally, the cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS) were employed to monitor the effectiveness of each step of the modification. The obtained results confirmed that the presence of the surface-attached covalently bound peptide DAL-PEG-DK5-PEG-OH enables LPS detection by means of CV technique within the range from 5 × 10-13 to 5 × 10-4 g/mL in PBS solution. The established limit of detection (LOD) for EIS measurements was 4.93 × 10-21 g/mL with wide linear detection range from 5 × 10-21 to 5 × 10-14 g/mL in PBS solution. Furthermore, we confirmed the ability of the electrode to detect LPS in a complex biological samples, like mouse urine and human serum. The effectiveness of the electrodes in identifying LPS in both urine and serum matrices was confirmed for samples containing LPS at both 2.5 × 10-15 g/mL and 2.5 × 10-9 g/mL.


Subject(s)
Biosensing Techniques , Lipopolysaccharides , Animals , Mice , Humans , Gold/chemistry , Antimicrobial Peptides , Endotoxins , Electrodes , Peptides , Electrochemical Techniques/methods , Biosensing Techniques/methods
16.
J Agric Food Chem ; 72(13): 7291-7298, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507714

ABSTRACT

Bacillus thuringiensis (Bt) is widely used to produce biological pesticides. However, its persistence is limited because of ultraviolet (UV) rays. In our previous study, we found that exogenous intermediates of the urea cycle were beneficial to Bt for survival under UV stress. To further explore the effect of the urea cycle on the resistance mechanism of Bt, the rocF/argG gene, encoding arginase and argininosuccinate synthase, respectively, were knocked out and recovered in this study. After the target genes were removed, respectively, the urea cycle in the tested Bt was inhibited to varying degrees. The UV stress test showed that the urea cycle disorder could reduce the resistance of Bt under UV stress. Meanwhile, the antioxidant enzyme activities of Bt were also decreased to varying degrees due to the knockout of the target genes. All of these results revealed that the urea cycle can metabolically regulate the stress resistance of Bt.


Subject(s)
Bacillus thuringiensis , Bacillus thuringiensis/genetics , Urea , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Endotoxins/pharmacology
17.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540692

ABSTRACT

Recent studies have suggested that ABC transporters are the main receptors of Cry toxins. However, the receptors of many Cry toxins have not been identified. In this study, we used a heterologous cell expression system to identify Bombyx mori ABC transporter subfamily C members (BmABCCs) that function as receptors for five Cry toxins active in Lepidopteran insects: Cry1Aa, Cry1Ca, Cry1Da, Cry8Ca, and Cry9Aa. All five Cry toxins can use multiple ABCCs as low-efficiency receptors, which induce cytotoxicity only at high concentrations. Surface plasmon resonance analysis revealed that the KD values between the toxins and BmABCC1 and BmABCC4 were 10-5 to 10-9 M, suggesting binding affinities 8- to 10,000-fold lower than those between Cry1Aa and BmABCC2, which are susceptibility-determining receptors for Cry1Aa. Bioassays in BmABCC-knockout silkworm strains showed that these low-efficiency receptors are not involved in sensitivity to Cry toxins. The findings suggest that each family of Cry toxins uses multiple BmABCCs as low-efficiency receptors in the insect midgut based on the promiscuous binding of their receptor-binding regions. Each Cry toxin seems to have evolved to utilize one or several ABC transporters as susceptibility-determining receptors.


Subject(s)
ATP-Binding Cassette Transporters , Bacillus thuringiensis Toxins , Bombyx , Hemolysin Proteins , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bombyx/metabolism , Multidrug Resistance-Associated Protein 2 , Endotoxins , Insecta/metabolism , Bacterial Proteins/metabolism
18.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451817

ABSTRACT

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Sepsis , Humans , Kupffer Cells , Liver/pathology , Liver Diseases/pathology , Organoids , Sepsis/pathology , Endotoxins , Cell Differentiation
19.
Sci Total Environ ; 927: 171969, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547998

ABSTRACT

Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.


Subject(s)
Aerosols , Endotoxins , NF-kappa B , Humans , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Interferon Regulatory Factors/metabolism , Toll-Like Receptor 2/metabolism , Bacteria , Air Pollutants , Belgium , Immunity, Innate
20.
Nat Immunol ; 25(4): 693-702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486019

ABSTRACT

The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1ß for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1ß was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1ß, resulting in severe inflammation.


Subject(s)
Anaphylaxis , Inflammasomes , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mast Cells , Anaphylaxis/metabolism , Immunoglobulin E/metabolism , Endotoxins/metabolism , Cell Degranulation
SELECTION OF CITATIONS
SEARCH DETAIL
...